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Abstract: A basic topic in river studies, whether in hydrodynamics or water quality, is the accurate estimation of 

both geomorphological and geometric characteristics in cross sections in streams or channels. Many 

measurements or methodologies that are within the state of the art, are not direct or easy by several aspects. For 

this reason, this article analyses the application of a state function, Ф (t), which, acting as a thermodynamic 
potential, allows the magnitudes of the cross sections, depth of the water sheet, slope and longitudinal 

dispersion coefficient to be obtained directly, using NaCl as a tracer. In order to apply and validate this new 

method properly, an experiment conducted in 1966 by H.B. Fischer in the W.M. Keck Laboratory of Caltech in 

USA was studied on two points of the canal. It found average differences of 0.016 m
2 (with reference) in the 

area of the canal, 0.015 m of the height of the water sheet and an average difference of -0.00015 in the slope of 

the canal 
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1 Introduction 
The measurement with traditional methods of 

physical variables in natural streams, such as the 

geometry of the cross sections of the flows (width 

and depth), and the parameters of the 

geomorphology, such as slope and roughness, in a 

number of cases is of great difficulty due to the very 

nature of the flows, which constitutes a serious 

problem for the successful completion of studies 

based on these data [1]–[5]. For this reason it is 

desirable to have new alternative, more general and 

easier methods to estimate these parameters and 

mainly in developing countries where the shortage 

of measurement stations and equipment with high 

pressures does not allow reliable data to be 

obtained. 

Some authors have proposed the use of 

thermodynamics in river hydraulics, either for 

understanding fluid movement or for application in 

water bodies [6]–[8]. Accordingly, the use of state 

functions or thermodynamic potentials has been 

employed in river hydraulics and hydrodynamics [9], 

since these functions have the comparative advantage that 

they do not depend on the minimum details that make up 

physical processes, and therefore reflect their energy 

evolution in a general way [10]. 

The previous characteristic allows a better 

understanding and application through the use of 

tracers, since the physical phenomena of mass 

transport, such as Diffusion and Dispersion, are 

movements of large molecular populations that 

evolve in an irreversible way, the changes of 

degrees of freedom of their movements (and of the 

changes of the parameters linked to them), will be 

easily described by these thermodynamic potentials. 

In accordance with the above, this article 

presents a method for estimating slopes, areas, depth 

of water sheets and dispersion coefficients, by 

developing equations that represent these 

characteristics using the state function, Ф (t) as the 

theoretical reference axis.  For the verification, it is 

applied to an experiment carried out by H.B. Fischer 

in the W.M. Keck Laboratory Channel of Caltech in 

USA, since being a controlled experiment it has the 

advantage that the geometric parameters and the 

slope of this channel are known. 
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2.1 The State Function - Ф (t) 
The pouring of a conservative solute into a turbulent 

flow is an irreversible process, naturally subject to 

the general laws of physics. Such an evolution, 

occurring close to thermodynamic equilibrium, is 

usually described by some thermodynamic potential 

corresponding to the constraints of the system. A 

usual potential is Gibbs' so-called "free enthalpy", 

suitable for systems with constant temperature and 

pressure, or appropriate for natural flows. However, 

the application of this thermodynamic potential 

requires knowledge of certain parameters that are 

difficult to evaluate, such as the electro-chemical 

potentials of the chemical species at play at the 

system boundaries. 

It is then necessary to try to define some state 

function that will smooth out this analytical 

difficulty. Recently it has been found that such a 

function exists and that its calculation is extremely 

simple through time data in Gaussian tracer curves. 

Its definition is based on the concept of mutual 

spontaneous separation of the tracer particles, once 

these penetrate the water, as show in Figure 1. 

 

 
Figure 1. Injection and mutual spontaneous 

separation of tracer particles. 

 

This happens because there is a natural reaction of 

the system to restore the lost balance (Le Chatelier-

Braun principle). This separation reaction causes the 

concentration to decrease, which grew abruptly at 

the first instant of the injection [11]. 

A practical way to measure this effect is by a 

function that measures the separation velocity 

divided by the advective velocity. The separation 

velocity can be defined as the ratio between a 

characteristic Gaussian shift, ∆ and the time it takes 

to perform, τ. 

 

Ф =
𝑉𝑠𝑒𝑝

𝑈
=

(
∆

𝜏
)

𝑈
     (1) 

The characteristic one-dimensional Gaussian 

shift can be written as a completely random shift, 

i.e. Brownian. 

Ф =
(

√2𝐸𝜏

𝜏
)

𝑈
=

√
2𝐸

𝜏

𝑈
                  (2) 

Now, you can show that: 

∮ 𝑑Ф = 0    (3) 

So Ф is a state function, i.e. a thermodynamic 

potential close to equilibrium, which fully describes the 

evolution of the solute in turbulent flow. This function is 

decreasing with time, with an arbitrary initial value, Фo: 

Figure 3. Absolute behavior of the curve Ф (t). 

On the other hand, it should be noted that this 

state function has a very characteristic nature, since 

it is a dimensionless expression, which implies that 

it allows for the definition of a multitude of reasons 

within the set that is analyzed in the topic of 

interest. Remember that no other thermodynamic 

potential has this flexibility since they normally 

have the energy dimension and therefore their 

definitions are obliged to have this single 

dimension. 

2.2 The state function applied to the Fick 

Function. 
The one-dimensional Fick equation describes the 

evolution of a tracer pen in time and space, where 

Co is the base concentration of the flow. 

 

𝐶(𝑥, 𝑡) =
𝑀

𝐴√4𝜋𝐸 𝑡
∗ 𝑒−

(𝑋−𝑈∗𝑡)2

4𝐸 𝑡 + 𝐶𝑜             (5) 

 

Now, if you use E and include it in equation (4) 

you have a new version of the Advection-Dispersion 

model: 
 

𝐸 =
Ф2∗𝑈2∗𝛽∗𝑡𝑝

2
              (6) 

Here β≈0.215 comes out of the application of a 

particle count by the Poisson statistics [12], tp is the 

peak time of the concentration distribution. 

Normally this definition of the Longitudinal 

Coefficient of Dispersion is compared with the 

classical Elder definition. 

 

𝐸 ≈ 5.93 ∗ ℎ ∗ √ℎ ∗ 𝑔 ∗ 𝑆2
    (7) 
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2 Theory 
 



Here h is the mean depth, g is the acceleration of 

gravity, and S is the slope of the power line. Now, 

by replacing in (5) the definition of E according to 

(6), we have the so-called modified Fick Equation. 

𝐶(𝑥, 𝑡) =
𝑀

𝑄∗Ф∗𝑡∗1.16
∗ 𝑒

−
(𝑋−𝑈∗𝑡)2

2𝛽 (Ф∗𝑈∗𝑡)2 + 𝐶𝑜  (8) 

The advantage of this relationship is that it 

reflects fairly well the asymmetry (long tail) 

characteristics of the actual tracer experiments, 

which is not possible with state-of-the-art models. 

2.3 Mass availability correction function 
When a tracer is injected suddenly into a turbulent 

flow, the particles of the solute disperse gradually, 

making a fraction of the mass unavailable for 

dispersion very high at first, and decreasing non-

linearly over time. To describe this process an 

associated function, rq(Ф), is defined as follows: 
 

𝑟𝑞(Φ) ≈
𝑀𝑜

𝑀
    (9) 

 

With the following specific expression: 

𝑟𝑞(Φ) ≈ 1.0094 Φ2 − 0.018Φ + 0.9921  (10) 

And with the curve shown in Figure 4. 

 

 
Figure 4. Behavior of the rq (Ф) curve. 

 

At the beginning, when the tracer is very 

concentrated (and cohesive) in a small volume, and 

the state function has a high value, say greater than 

Ф ≈ 0.38 (situation for which solute transverse 

diffusion has been cancelled), then the nominal 

mass, Mo, is not all effectively available (only a 

smaller percentage, or effective mass M,), and 

therefore Mo > M. 

This relationship between rq(Ф) and dispersion 

is shown in Figure 5. 

 

 
Figure 5. Correspondence between dispersion states 

and state function values 

 

2.4 Analysis of the processes of dispersion 

and diffusion from the areas under the 

longitudinal distribution curve. Longitudinal 

Dispersion 
In this case the concentration is a function of 

distance, X, and time, t, normally the observer is 

located at a given point downstream, therefore the 

only real variable is time. The corresponding 

integral is: 

 

∫ 𝑐(𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎
    (11) 

 

The dimensions of this function are [M*L-3*T] = 

Mass per unit of flow. It can be written, according to 

the principle of conservation of mass: 

 

∫ 𝑐(𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎
=

𝑀

𝑉
∗ 𝑡 =

𝑀

(
𝑉

𝑡
)

=
𝑀

𝑄
  (12) 

 

2.5 The tracer distribution curve as a 

function of distance, X: Calculation of the 

cross section, Ayz, in the current tube. 
If instead of expressing the tracer concentration as a 

function of time it is done as a function of distance 

(longitudinal coordinate, X), as see in Figure 6. 

 

 
Figure 6. Definition of the current tube cross section 
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Then, with Mo the nominal mass injected this 

case can be written that: 

 

∫ 𝑐(𝑋)𝑑𝑋
𝑋𝑏

𝑋𝑎
=

𝑀𝑜

𝑉
∗ 𝑑𝑋 =

𝑀𝑜∗𝑑𝑋

𝑑𝑋∗𝑑𝑌∗𝑑𝑍
=

𝑀𝑜

𝑑𝑌∗𝑑𝑍
=

𝑀𝑜

𝐴𝑦𝑧𝑜
   (13) 

 

Therefore, the nominal cross-sectional area 

remains: 
 

𝐴𝑦𝑧𝑜 =
𝑀𝑜

∫ 𝐶(𝑋)𝑑𝑋
𝑋𝑏

𝑋𝑎

   (14)  

 

Finally, the effective definition of the cross-

section, Ayz, remains. 

 

𝐴𝑦𝑧 =
(

𝑀𝑜

𝑟𝑞(Ф)
)

∫ 𝐶(𝑋)𝑑𝑋
𝑋𝑏

𝑋𝑎

   (15) 

 

This is a very useful calculation, since in the 

dynamics of the tracers it is vital to know the cross-

sectional area of the current tube through which the 

solute advances, as see in Figure 7. 

 

 
Figure 7. Cross-sectional area, Ayz, of the tracer 

advance. 

 

As normally the RWT rhodamine concentration 

is given in PPB (μg/lts) and the flow rate in lts/s and 

the cross sectional area in m2, the following 

dimensional adjustment must be made: 

 

𝐴𝑦𝑧 =
𝑀

∫ 𝐶(𝑋)𝑑𝑋∗(1000)
𝑋𝑓

𝑋𝑖

   (16) 

 

To use this alternative for calculating the Ayz 

cross-section, you must change the time variable, t, 

in equation (7), and put in place the "distance" 

variable, X. 

𝐶(𝑋) =
𝑀

𝑄∗Φ∗(𝑡𝑝)∗1.16
∗ 𝑒

−
(𝑋𝑜−𝑋)2

2∗𝛽∗(Φ∗𝑋)2 + 𝐶𝑜     (17) 

Note that in the first factor of the member to the 

right of the previous expression, time is not a 

variable but a number, since in this case, an instant 

of time is fixed and the distance varies, unlike what 

is expressed in equation (7) where there is a fixed 

point (distance) and it is time that passes. For this 

reason the peak time (tp) is put in the denominator. 

 

3 Practical application of the 

proposed formulas based on Ф. With 

data from H. Fisher (1966) on the 

CALTECH channel. 
This controlled experiment allows verifying the 

formulas for the calculation of geometric and 

geomorphological parameters. H.B. Fischer 

conducted this experiment in the calibrated 40 meter 

channel with adjustable slope, at the W.M. Keck 

Laboratory at Caltech in 1966 [13], in order to verify 

Elder's formula for channel dispersion 

This is a rectangular channel with plastic walls 

and a stainless steel bed. It has a uniform run from 

0.0 m to 38.6 m. For the experiment in question, a 

salt mass of 38.6 grams of NaCl was injected, and a 

slope of 0.000257 adjusted by means of precision 

mechanical laboratory instrumentation was used.  

The experiment, named by its author as the "Series" 

2700, consisted of eight runs. Four (2700 to 2704) 

made at a distance X1= 14.06 m and other four 

(2705-2708) made at a distance X2= 25.06 m. 

According to Figure 8, the flow in question has a 

cross-sectional area of Ayz=0.1408 m2. 

 

 
Figure 8. Appearance of the tracer measurement 

assembly in the Caltech channel, USA. Source: [13] 

 
The data for the validation of this proposed 

model were obtained from publications given by H. 

Fisher, mainly his doctoral thesis and the article The 

Mechanics of Dispersion in Natural Streams, which 

describe the tests carried out and their results [13], 

[14]. 

Figure 9 shows the values reported by Fisher's 

1966 experiment, in which the time of arrival (tpp) 

at point one was 32 s and a peak time (tp) of 7.8 s, 

for point two a tpp of 59 s and a tp of 64 s. 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.21

Carlos Peña-Guzmán, 
Alfredo Constain, Gina Peña-Olarte

E-ISSN: 2224-347X 216 Volume 15, 2020



 
Figure 9. Sequential curves in Caltech channel 

for dispersion analysis. 

 

According to these data Table 1 shows the basic 

data of the plotter applied to the experiment and the 

calculated values of the state function. While the 

two sequential curves are shown in Figures 9 

(original) and 10 (Models), with the remarkable 

experimental values that are then compared with the 

calculated values. The models of both curves are 

made with the modified Fick Equation (7) using the 

notations of the experimental curves. 

Table 1. Caltech channel salt tracer data (new 

methodology). 

 

 

 
Figure 10. Curves of the models in time, 

according to the modified Fick Equation 

 

3.1 Application of the formulas for the cross-

sectional area in the experiment. 
In this case it is necessary to apply Equation (13), 

with an additional correction for dimensional 

factors. The first thing to do is to set up the models 

of the two experimental curves, but not in the time 

domain, but in the distance domain. For this it is 

necessary to apply Equation (16) to the modeling 

curves shown in the previous Figure, which are 

already executed in the following Figure 11. 

 

 
 

With an approximate flow of Q≈42.8 l/s, it is 

feasible to calculate the two areas under the plotter 

curves, roughly like this: 

 

∫ 𝑐1(𝑋) ∗ 𝑑𝑋 ≈ 301.83
𝑥𝑓

𝑥𝑖
(𝑀𝑔𝑟 ∗ 𝑚)  (18) 

 

And also: 

 

∫ 𝑐1(𝑋) ∗ 𝑑𝑋 ≈ 301.34 (𝑀𝑔𝑟 ∗ 𝑚)
𝑥𝑓´

𝑥𝑖´
  (19) 

An additional step is to establish the relationship 

between the "nominal" mass, Mo, and the 

"effective" mass, M, by means of equation (9), for 

the two curves C1(X) and C2(X): 

𝑟𝑞(0.137) ≈ 1.0094 ∗ 0.1372 − 0.018 ∗ 0.137 +

0.9921 = 1.009                            (20) 

 

And also: 

 
𝑟𝑞(0.13) ≈ 1.0094 ∗ 0.132 − 0.018 ∗ 0.13 + 0.9921 =
1.007                                                          (21)  

 

It is therefore evident that, thanks to the low 

values of Ф(t) for the two points under 

consideration, the two masses M and Mo are 

practically equal, indicating that the mass is all 

available. It is then possible to calculate the cross-

sectional areas in the channel, at X1=14.06 m and 

X2=25.06 m, using Equation (15): 

𝐴𝑦𝑧1 =
38600 𝑚𝑔

301.83∗1000(
𝑚𝑔𝑟

𝑚2
)

≈ 0.1278 𝑚2 (22) 

And also: 

 

𝐴𝑦𝑧1 =
38600 𝑚𝑔

301.34∗1000(
𝑚𝑔𝑟

𝑚2
)

≈ 0.1215 𝑚2 (23) 

 

Distance 

(m) 

Φ Cp 

(Mgr/l) 

tp 

(s) 

U 

(m/s) 

X1=14.06 0.137 135.0 37.8 0.372 

X2=25.06 0.130 78.8 67.4 0.372 
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This theoretical area should be compared with 

the experimental area of the flow cross section of 

Ayz≈0.141 m2, a difference of 0.132 m2 (9.36% 

error) was found for point 1 and for the second point 

a difference of 0.0195 m2 (13.82% error), with an 

overall difference of 0.016 m2 equivalent to an error 

of 11.59%. 

Knowing this value of the area and the width of 

the channel, the effective depth at each measuring 

point can be calculated: 

 

ℎ1 ≈
𝐴𝑦𝑧1

𝑊
≈

0.1278 𝑚2

1.1 𝑚
≈ 0.1162 𝑚  (24) 

 

and 

 

ℎ2 ≈
𝐴𝑦𝑧2

𝑊
≈

0.1215 𝑚2

1.1 𝑚
≈ 0.1105 𝑚 (25) 

 

As for the height of the water sheet, for the first 

point the difference found was 0.0118 m (9.21% 

error), for the second point the difference is 0.0175 

m (13.67%) an average error of 11.44% and an 

average difference of 0.01465 m. 

The next step is to calculate the Longitudinal 

Dispersion Coefficient with equation (6), for the two 

measuring sites: 

 

𝐸1 =
Ф12∗𝑈12∗𝛽∗𝑡𝑝1

2
≈

0.1372∗0.3722∗0.215∗37.8

2
≈

0.0106 𝑚2/𝑠                     (26) 

and 

𝐸2 =
Ф22∗𝑈22∗𝛽∗𝑡𝑝2

2
≈

0.1302∗0.3722∗0.215∗67.4

2
≈

0.0169 𝑚2/𝑠                     (27) 

 

Using now the Elder equation (7), the 

corresponding slope, S, can be determined for each 

point, and verified with the value given in Fischer's 

thesis: 
 

𝑆 ≈
𝐸2

𝑔∗(5.93∗ℎ
3
2)2

    (29) 

Therefore, for each of the points you have: 

𝑆1 ≈
𝐸12

𝑔∗(5.93∗ℎ1
3
2)

2 ≈ 2.05 ∗ 10−4 ≈ 0.000205 (30) 

And also:  

𝑆2 ≈
𝐸22

𝑔∗(5.93∗ℎ2
3
2)

2 ≈ 6.16 ∗ 10−4 ≈ 0.000616  (31) 

Regarding this parameter, the slope for point 1 was 

found to be 5.11x10-5 (an error of 19.9%), however for 

point 2 the difference is -0.00035 (an overestimate of the 

slope) this is because the dispersion coefficient is high, 

however the average value of the calculation of the slope 

then is 0.00041, showing a value of the same order as that 

of the slope of the channel 0.000257. 

 

4 Conclusion 
1.This article proposes a thermodynamic 

interpretation of the phenomenon of Advection and 

Dispersion in natural turbulent flows. Based on this 

approach, a state function is found that describes in 

a general way this process, allowing to calculate 

both a new Fick distribution that incorporates this 

function and also to arrive at the values of the 

longitudinal coefficient of dispersion. 

2. From this new distribution a version can be found 

that is based on distance instead of time, in this way 

the cross-sectional area of the flow through which 

the tracer circulates can be calculated, and from 

there with geometric data, the depth (or width) can 

be obtained. 

3. Using the definition of the Elder Longitudinal 

Dispersion Coefficient that involves the Slope and 

the Depth. 

4. This proposed methodology is easy to apply, 

since it only uses tracers, which is convenient in 

places where there are no mention or deficient 

systems. 

5. It is necessary to extend the investigation, for this 

it is necessary to carry out measurements in rivers 

with different typologies. 
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